DEGREE OF HYDRATION IN CEMENT PASTE AND C₃A–SODIUM CARBONATE–WATER SYSTEMS

I. Janotka¹ and S. C. Mojumdar^{2,3*}

¹Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská 9, 845 03 Bratislava 45, Slovakia ²Department of Chemical Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada ³University of New Brunswick, Saint John, NB, E2L 4L5, Canada

This research provides a fundamental understanding of the early stage hydration of Portland cement paste, tricalcium aluminate (C₃A) paste at water to cement ratio of 0.5 and C₃A suspension at water to cement ratio of 5.0 modified by 2 or 4 mass% of sodium carbonate. A high conversion of unreacted clinker minerals to gel-like hydration products in the cement–Na₂CO₃ pastes takes place rapidly between 1st to 24th h. Contrary the Ca(OH)₂ formation within the same time interval is retarded in the excess of CO₃²⁻ ions due to intensive rise and growth of CaCO₃ crystals in hydrated cement. Later, the conversion of clinker minerals to the hydrate phase is reduced and higher contents of calcite and vaterite relative to that of Ca(OH)₂ in comparison with those found in the Portland cement paste are observed. As a consequence a decrease in strength and an increase in porosity between hardened Portland cement paste without sodium carbonate and those modified by Na₂CO₃ are observed. C₃A hydrates very quickly with sodium carbonate between 1st and 24th h forming hydration products rich in bound water and characterized also by complex salts of (*x*)C₃A·(*y*)CO₂·(*z*)H₂O type, whereas C₃A–H₂O system offers C₃AH₆ as the main hydration product. Higher content of the formed calcium aluminate hydrates in C₃A–Na₂CO₃–H₂O system also contributes to early strength increase of Portland cement paste.

Keywords: C₃A suspension, cement paste, hydration, porosity, strength

Introduction

In order to understand the chemistry of Portland cement hydration, it is necessary to consider the hydration processes of all its individual clinker minerals. The results have been interpreted to indicate the occurrence of three distinct stages in the course of hydration of Portland cement, and mainly tri- and dicalcium silicates: (a) the formation of a high CaO/SiO₂ low area intermediate, (b) the conversion of this to a low CaO/SiO₂, high area intermediate and (c) the conversion of this to stable hydration products [1–9].

Tricalciumsilicate (C_3S) is the major component of Portland cement. Its hydration reaction is represented by the following approximate chemical equation [10]:

$$2Ca_3SiO_5+6H_2O \rightarrow Ca_3Si_2O_7\cdot 3H_2O+3Ca(OH)_2$$
 (1)

or in cement nomenclature

 $2C_3S+6H\rightarrow C-S-H+3CH$

The products formed are a calcium silicate hydrate known as C-S-H and calcium hydroxide. The formula given for C-S-H is only a very rough approximation because also more than one variety of C-S-H is formed during the hydration reaction.

Dicalciumsilicate (β -C₂S) hydrates much more slowly than C₃S does, to form similar type of C–S–H and Ca(OH)₂.

$$2Ca_{2}SiO_{4}+4H_{2}O \rightarrow Ca_{3}Si_{2}O_{7}\cdot 3H_{2}O+Ca(OH)_{2}$$

$$2C_{2}S+4H \rightarrow C-S-H+CH$$
(2)

Hydrated C_3S is a principal contributor to early compressive strength whereas β - C_2S contributes to long-term strength. Less calcium hydroxide is formed during β - C_2S hydration than when C_3S is hydrated, which has certain advantages to strength development [10].

Tricalciumaluminate (C₃A) normally occurs in Portland cement clinker between 5 to 15% by mass and hydrates very quickly in water to form hexagonal plate hydrates of C₂AH₈ and C₄AH₁₃ in the first instance which convert with time to the more stable cubic C₃AH₆, or if the temperature is sufficiently high (>40°C), C₃A converts directly to C₃AH₆.

$$Ca_{3}Al_{2}O_{6}+21H_{2}O \rightarrow Ca_{2}[Al(OH)_{5}]_{2}\cdot 3H_{2}O+2[Ca_{2}Al(OH)_{7}\cdot 3H_{2}O] \rightarrow 2(Ca_{3}[Al(OH)_{6}]_{2})+9H_{2}O \qquad (3)$$

$$2C_3A+21H \rightarrow C_2AH_8+C_4AH_{13} \rightarrow 2C_3AH_6+9H_8$$

These immediately follow in Portland cement a reaction between the calcium sulphate in solution and

^{*} Author for correspondence: smojumda@engmail.uwaterloo.ca

the calcium aluminate hydrate to form ettringite $C_3A \cdot 3C\overline{S} \cdot H_{32}$.

$$2[Ca_{2}Al(OH)_{7}\cdot 3H_{2}O]+3CaSO_{4}\cdot 2H_{2}O+14H_{2}O \rightarrow Ca_{6}[Al(OH)_{6}]_{2}(SO_{4})_{3}\cdot 26H_{2}O+Ca(OH)_{2} \qquad (4)$$

$$C_{4}AH_{13}+3CSH_{2}+14H \rightarrow C_{3}A\cdot 3C\overline{S}\cdot H_{32}+CH$$

Calcium aluminoferrite is a solid solution within the C_2A-C_2F system whose composition in Portland cements approximates to C_4AF . The C_4AF hydration is very similar to that of C_3A . Reaction is slower than for C_3A but increases with rising A/F ratio. C_4AF contributes little to the strength of Portland cement paste.

The indications are that carbon dioxide reacts principally with calcium hydroxide to form calcium carbonate. Other hydration products are capable of reacting under certain conditions [11–14]. The chemical reactions that characterize the carbonation are:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O + q \text{ calories}$$
 (5)

where q=580 calories per gram of reacted CaO (=7.7 kJ mol⁻¹) [15]

$$C_3SH_3 + 3CO_2 \rightarrow 3CaCO_3 + S_2 + 3H_2O \tag{6}$$

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$
(7)

The degree of carbonation of C–S–H gel increases with the following parameters:

(a) reaction temperature, (b) specific surface area of the particles, (c) time of aeration, (d) relative humidity of the reacting environment and (e) partial pressure of carbon dioxide [15].

Some of the bicarbonate is then washed out but some of the solution penetrates to combine with $Ca(OH)_2$ to form calcium carbonate.

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O \qquad (8)$$

An admixture accelerating hydration of clinker minerals may influence the setting. Sodium carbonate belongs to the group of soluble inorganic salts according to the classification of accelerating admixtures influencing mainly the acceleration of C₃S hydration [16]. Mechanism of the initial C₃S hydration in contact with carbonate has been explained already by follows [17–22]: a hydrate layer forming around the C₃S grain is after the contact with solution disintegrated by the excess of CO_3^{2-} ions. This results in markedly increased Ca²⁺ and OH⁻ diffusion velocity through the hydrate phase layer. A dormant period is shortened and the C₃S hydration is consequently accelerated. However this has a significant influence on pore structure development. Due to the excess of CO_3^{2-} ions at C₃S hydration amorphous CaCO₃ particles are very quickly precipitated in the supersaturating solution of Ca^{2+} and CO_3^{2-} . In few minutes amorphous carbonate phase is transformed to CaCO₃ of crystalline nature. The results show that well crystallized calcite with residual amounts of amorphous calcite together with well-crystallized vaterite is present in hydrated C_3S -carbonate system. The above carbonate phases together with carbonated C-S-H gel appear in hydrated C_3S -carbonate system particularly at the ambient temperature and relative humidity 60%.

For ultimate carbonation of hydrated calcium aluminates following formulae have been put forward [23]:

$$C_3AH_6+CO_2 \rightarrow CaCO_3+hydrous Al_2O_3$$
 (9)

$$C_3(A,F)H_6+CO_2 \rightarrow CaCO_3+$$

hydrous Al₂O₃+hydrous Fe₂O₃ (10)

 $C_4AH_{13}+4CO_2 \rightarrow 4CaCO_3+2Al(OH)_3+10H_2O \qquad (11)$

Early carbonation of hydrated C₃A and C₂A–C₂F system results in the initial formation of hexagonal plate and hexagonal prism type phases of 3CaO· $Al_2O_3 \cdot CaCO_3 \cdot 11H_2O(C_3A \cdot Cc \cdot H_{11})$ and $3CaO \cdot Al_2O_3 \cdot CaCO_3 \cdot 11H_2O(C_3A \cdot Cc \cdot H_{11})$ $3CaCO_3 \cdot 30H_2O(C_3A \cdot 3Cc \cdot H_{30}); 3CaO \cdot (Al_2O_3 \cdot Fe_2O_3)$ $CaCO_3 \cdot 11H_2O\{C_3 \cdot (A.F) \cdot Cc \cdot H_{11}\}$ and 3CaO· $(Al_2O_3 \cdot Fe_2O_3) \cdot 3CaCO_3 \cdot 30H_2O\{C_3 \cdot (A.F) \cdot 3Cc \cdot H_{30}\},\$ respectively. Contemporarily a surface zone of hemicarbonate C₄A·1/2CO₂·12H₂O on the crystals of C₄AH₁₃ and C₄AH₁₉ is formed. At temperature of 20°C the monocarboaluminate hydrates tend to be more stable forms than tricarboaluminate hydrates becoming stable at lower temperatures [24]. Formation of the monocarboaluminate hydrate from C₃A and CaCO₃ is very rapid. Ultimately these hydrates are further attacked by CO_2 to form calcium carbonate and aluminate gel or gibbsite [25].

This paper is concerned by the hydration of Portland cement and C_3A and the study of the formed phase compositions both of the systems as well as strength and porosity development of Portland cement paste and those modified by 2 or 4 mass% of Na₂CO₃ hydrated for 1 h to 365 days in various curing conditions.

Experimental

Materials

Portland cement (CEM I 42.5), pure tricalcium aluminate (C₃A) and sodium carbonate Na₂CO₃ were used in these experiments. The cement pastes were prepared with Portland cement and Na₂CO₃ at ratio of 100-0% (control), 100-2% and 100-4% by mass at water to cement ratio of 0.5. C₃A was mixed with 4 mass% of Na₂CO₃ at water to cement ratio either of 0.5 (comparison with Portland cement pastes) or 5.0 for C₃A-H₂O suspensions (comparison with C₃A pastes). Chemical composition, specific mass, specific surface area, setting characteristics and strength

Chemical composition/%		Mineralogical composition Bogue%	
Insoluble residue	1.34	C ₃ S	36.08
SiO ₂	21.90	C_2S	35.65
Al_2O_3	5.97	C ₃ A	11.43
Fe ₂ O ₃	2.60	C ₄ AF	7.90
CaO	61.87	3 days strength/MPa	3.8/24.1
MgO	1.51	28 days strength/MPa	6.1/41.4
SO ₃	2.01	Normal consistency/%	29.0
K ₂ O	1.19	Initial set/hours-minutes	2–55
Na ₂ O	0.31	Final set/hours-minutes	4–05
Ignition loss	1.21	Specific gravity/kg m ⁻³	3166
CaO free	0.30	Specific surface/m ² kg ⁻¹	343.4

Table 1 Composition and basic properties of the cement

development of the cement are listed in Table 1. To prepare $3\text{CaO}\cdot\text{Al}_2\text{O}_3$ (C₃A), 50 g of raw materials in predetermined proportions were taken and ball milled for 60 min for homogenization. The powder was dried overnight in a hot air oven at 100°C and then fired in an electric muffle furnace. The firing temperature was kept at 1250°C for three hours using a heating rate approximately 200°C h⁻¹. The clinkered product was left to cool overnight to the room temperature and then grounded and sieved through 63 µm meshes. After firing, C₃A was put into a glass tube to avoid moistening and carbonation from air.

Methods

Cement pastes were prepared as cubes $20 \cdot 20 \cdot 20$ mm in steel moulds on a vibration table (50 Hz, 0.35 mm) with vibration time of 30 sec. The specimens were stored up to 24 h in a climate chamber at 20° C and 100% R. H., and subsequently at 20° C/100% R. H. – wet cure for the next 27 days. They were then divided into two groups and kept either in 20° C/100% R. H. – wet air or 20° C/60% R. H. – dry air for 365 days. After stopping the hydration with a mixture of acetone and ether and drying in a vacuum oven for 6 h at 40° C, the specimens were grinded to the grain fineness $\leq 90 \ \mu$ m. A dry powder was then stored in tightly closed test tubes maintained over anhydrous CaCl₂ filler in desiccators until testing.

 C_3A pastes and suspensions were prepared by manual mixing. The pastes were stored for 24 h in a climate chamber at 20°C and 100% R. H., and subsequently were kept in 20°C/100% R. H. – wet air for the next 27 days. The suspensions were maintained in polyethylene beakers and left to a gentle, slow mixing in water at 20°C for 24 h. Hydration was stopped by the same way as that of the cement pastes. A dry powder of hydrated C_3A after sieving through 63 μ m meshes was kept in tightly closed test tubes over anhydrous CaCl₂ filler in desiccators until testing.

Cement pastes were tested for compressive strength and total porosity. To study the cement hydration, X-ray diffraction patterns and thermal curves were observed. Strength characteristics of the specimens were estimated according to EN 196–1 Standard [26].

The volume density was estimated on the specimens of regular shape by weighting at calculated volume of tested prisms. The specific gravity was ascertained by a pycnometric method as the weight of the volume unit of solid constituents of the cement paste in powder stage. Total porosity was calculated on the basis of volume density and specific gravity values using the formula:

$$TP = \left(1 - \frac{\rho_{\rm VD}}{\rho_{\rm SG}}\right) 100 \tag{12}$$

where *TP* is total porosity as the content of pores and voids in the cement paste, % ρ_{SG} is specific gravity, kg m⁻³, ρ_{VD} is volume density, kg m⁻³.

The percentage hydration was determined by an X-ray quantitative analysis at the Research Institute of Building Materials, Brno, CZ. The content of Ca(OH)₂ was estimated by the sum of diffraction lines heights at 0.491, 0.263 and 0.193 nm; of C₃S and β -C₂S at 0.277 and 0.278 nm, respectively, of calcite at 0.303 and 0.249 nm and that of vaterite at 0.330 nm. To study C₃A hydration X-ray diffraction patterns were recorded using Philips apparatus, CuK_{α} radiation and Ni-filter. Thermogravimetry (TG) and differential thermal analysis (DTA) were conducted from 20 to 1000°C using a Derivatograph Q 1500, MOM Budapest. The sample mass was 20 mg and heating rate 10°C min⁻¹ in flowing air. The amount of

bound water was determined from TG curves as the mass loss over the temperature range $100-450^{\circ}$ C; and of Ca(OH)₂ as the sum of mass loss over the temperature range 450–600°C {endotherm corresponding to dehydroxylation of Ca(OH)₂ indicating free portlandite} and beyond 800°C {endotherm corresponding to decarbonation of CaCO₃ indicating total Ca(OH)₂, free and carbonated altogether}.

Results and discussion

The percentage hydration of cement clinker minerals specified by bound water content as a function of time is plotted in Figs 1 and 2. The explanation of the symbols inserted in Figs 1 and 4 is as follows: Fig. 1 – control – d, 2 mass% Na₂CO₃ – d and 4 mass% Na₂CO₃ – d. The control cement paste and those with 2 and 4 mass% of Na₂CO₃ addition cured in 20°C/60% R. H. – dry air; Fig. 2 – control-w, 2 mass% Na₂CO₃ – w and 4 mass% Na₂CO₃ – w. The control cement paste and those with 2 and 4 mass% Na₂CO₃ – w. The control cement paste and those with 2 and 4 mass% of Na₂CO₃ – w. The control cement paste and those with 2 and 4 mass% of Na₂CO₃ – w. The control cement paste and those with 2 and 4 mass% of Na₂CO₃ addition were cured in 20°C/100% R. H. – wet air. The time axes have been made logarithmic in all figures for the sake of convenient representation. The time of curing is given in h: 672 and 8760 h, which correspond to 28 and 365 days, respectively.

Fig. 1 The bound water content in the cement pastes cured in 20° C/60% R. H. – dry air

Fig. 2 The bound water content in the cement pastes cured in 20°C/100% R. H. – wet air

Fig. 3 The Ca(OH)₂ content in the cement pastes cured in 20°C/60% R. H. – dry air

Fig. 4 The Ca(OH)₂ content in the cement pastes cured in 20°C/100% R. H. – wet air

The bound water content is 2.2 times higher in the paste with 4 mass% of Na₂CO₃ relative to the control cement paste after 1 h hydration. After 6 h the content of bound water is 1.4 times higher in the paste with 2 mass% of Na₂CO₃ and 1.5 times higher in the paste with 4 mass% of Na₂CO₃ compared to the control paste. With exposure time, the bound water content is higher in the control cement paste. The data for the content of free and total Ca(OH)₂ (Figs 3, 4) obtained in the same pastes as reported in Figs 1, 2 show that free and total Ca(OH)₂ formation does not follow the degree of hydration found for the gel-like hydration products. The calculations were corrected by CO_3^{2-} amount from Na₂CO₃. The formation of free and total Ca(OH)₂ is markedly influenced by the paste mixture composition. In time interval up to 24 h of hydration, phase composition of cement pastes with 2 and 4 mass% of Na₂CO₃ is characterized by reduced amount of Ca(OH)₂ and increased formation of carbonates opposite to that in the control cement paste. The curves cross each other after 24 h hydration indicating a marked mixture composition dependence on the phase composition development.

The above results are supported by phases detected from DTA plots (Figs 5, 6, 7). A preferential formation of the hydrate phase of type C–S–H and C–A–H (endotherm at peak maximum of 120°C corresponding to the above gel-like hydration products) particularly in time of 1 and 6 h in cement pastes with 2 and 4 mass% of Na₂CO₃ relative to the control paste

Fig. 5 DTA curves of the control cement paste cured for 1, 6, 16 and 24 h at 20°C/100% R. H. – wet air

Fig. 6 DTA curves of the cement paste with 2 mass% of Na₂CO₃ cured for 1, 6, 16 and 24 h in 20°C/100% R. H. – wet air

Fig. 7 DTA curves of the cement paste with 4 mass% of Na₂CO₃ cured for 1, 6, 16 and 24 h at 20°C/100% R. H. – wet air

is confirmed. Contrary, development of Ca(OH)₂ in the same time interval is slowed down. The addition of Na₂CO₃ accelerates formation of gel-like hydration products when compared to crystalline Ca(OH)₂ development. This results in more rapid strength growth at early stage hydration of the cement paste. Free Ca²⁺ and CO₃²⁻ ions preferably react in the supersaturated solution firstly giving CaCO₃ nuclei that are later substituted to crystalline carbonates, also contributing to strength increment at early stage hydration. It is believed that besides C₃S and β -C₂S hydration, the further clinker mineral contributing to strength increase at early stage hydration is tricalcium aluminate. C₃A gives a variety of quickly formed aluminate hydrates influencing microstructure development of the Portland cement paste. Bearing in mind that C₃A content in Portland cement is between 5 and 12 mass% generally, one would not disappreciate its role on the hydration rate and growth of early strengths in the cement. For this aim mineralogical composition of hydrated C₃A systems was studied in more detail. X-ray diffractograms of origin unhydrated C₃A and C₃A pastes with and without Na₂CO₃ addition after 24 h hydration in 20°C/100% R. H. – wet air are displayed in Fig. 8. C₃A is characterized by diffraction lines at 0.404, 0.267, 0.219 and 0.190 nm. Modification of C₃A with water leads to significant structural changes. The phase analysis shows that besides reflections of unhydrated C3A peaks of calcium aluminate hydrates are present. The main hydration product is tricalcium aluminate-6 hydrate (C₃AH₆) as proved by the reference of peaks at 0.509, 0.333, 0.312, 0.228 and 0.203 nm. Dicalcium aluminate -8 hydrate (β -C₂AH₈ recognized by the reflection at 1.03 nm), tetracalcium aluminate - 19 hydrate (C₄AH₁₉ confirmed at 0.404 nm), tetracalcium aluminate - 10 hydrate (C₄AH₁₀ identified at 0.279 and 0.246 nm) occur in C₃A+H₂O paste in minor amounts

compared to those of C₃AH₆. As carbonation follows up carbonate aluminate hydrate of type tetracalcium monocarbonate - 11 hydrate (C₄A·CO₂· 11H₂O pattern at 0.760 nm) is present. The comparative analysis of the powder patterns of C₃A+H₂O and C₃A+4% Na₂CO₃+H₂O pastes shows that both pastes contain similar content of unhydrated C₃A. This indicates the same degree of conversion of tricalcium aluminates to aluminate hydrate phases at 24 h early stage hydration. Patterns of peaks of monocarbonate aluminate hydrate (C₄A·CO₂·11H₂O) become clearer in C₃A+4% Na₂CO₃+H₂O but the intensity of peaks for C₃AH₆ decreases when compared to C₃A+H₂O paste. Moreover two new peaks appear; that for tetracalcium aluminate – 13 hydrate (β -C₄AH₁₃ at 0.780 nm) and tetracalcium aluminate hemicarbonate - 12 hydrate (C₄A·1/2CO₂·12H₂O at 0.385 nm). For better X-ray examination of hydrated C₃A systems water suspensions were prepared (Fig. 9). The C_3A+H_2O pastes were done with w/c of 0.5 whereas suspensions with w/c ratio of 5.0. The comparative analysis of the powder patterns between C₃A pastes and suspensions shows that there are no detectable changes in the peak positions, although some peaks disappeared and the other become clearer. Reflections of C_3A have almost disappeared in suspensions.

Fig. 9 X-ray diffraction patterns of C₃A water suspensions either the control or with 4 mass% of Na₂CO₃ after 24 h hydration

There is only a slight diffraction line of unreacted C₃A at 0.190 nm. This evidently confirms the higher degree of hydration in C₃A suspensions relative to that in C₃A pastes. Intensity of diffraction peaks of C₃AH₆ slightly decreases in C₃A+4% Na₂CO₃+H₂O suspension compared to the control C_3A+H_2O . The analysis indicates evident differences in intensities of many of the reflections between 4 to 6 2Θ and 10 to 12 2 Θ , and also occurrence of some new peaks when comparing the XRD results of C3A+H2O and C₃A+4% Na₂CO₃+H₂O suspensions. Between 4 and 6 2Θ , there has been observed a peak at 0.760 nm in C_3A+H_2O suspension, typical for $C_4A\cdot CO_2\cdot 11H_2O$. Moreover in the case of powder analysis of C₃A+4% $Na_2CO_3+H_2O$, two new peaks are observed at 0.780 nm for α -C₄AH₁₃ and at 0.800 nm for C₄A· 1/2CO₂·12H₂O. Patterns of peaks at 0.385 nm for $C_4A \cdot 1/2CO_2 \cdot 12H_2O$ and at 0.378 nm for $C_4A \cdot CO_2 \cdot 12H_2O_2 \cdot 12H_$ 11H₂O become clearer in C₃A+4% Na₂CO₃+H₂O between 10 and 12 2Θ when compared to relevant reflections in C₃A+H₂O suspension. Moreover new peak at 0.404 nm typical for α -C₄AH₁₉ appears.

X-ray examination of the C₃A+H₂O and C₃A+4% Na₂CO₃+H₂O pastes after 28-day hydration in 20°C/100% R. H. – wet air shows (Fig. 10) that the intensity of peaks for C₃AH₆ at 0.509, 0.433, 0.333, 0.312, 0.228 and 0.203 nm increases relatively to those found in the pastes after 24 h hydration. Intensity of peaks for unreacted C₃A is decreased. It is observed that patterns of peaks typical for α -C₄AH₁₉, C₄AH₁₀ and C₄A·CO₂·11H₂O become clearer in the pastes after longer period of hydration, and contemporarily peak intensities of the above hydration products are getting clearer in C₃A+4% Na₂CO₃+H₂O paste opposite to those appeared in C₃A+H₂O system.

The results have been interpreted to indicate the occurrence of two distinct stages in the course of hydration reactions of cement pastes with Na₂CO₃ addition. The first concerns the formation of gel-like hydration products of C-S-H and C-A-H types with consequent microcrystalline $Ca(OH)_2$ particle development. High-lime C-S-H products are unstable with respect to its surroundings due to the excess of CO_3^{2-} ions and are quickly transformed to calcite and vaterite in the cement paste. This process lasts very intensively up to 24 h of the hydration, also due to intense calcium aluminate hydrate and calcium carbonate aluminate hydrate formations within the first 24 h. Acceleration of gel-like hydration products development of calcium silicate and calcium aluminate types and formation of larger volume of the hydrate phase in a volume unit of the bulk mass in the cement paste with 2 to 4 mass% of Na₂CO₃ within 24 h result in early strength increases relative to those in the

Fig. 10 X-ray diffraction patterns of the control C₃A paste and with 4 mass% of Na₂CO₃ after 28-day hydration at 20°C/100% R. H. – wet air

control paste. The quickly formed hydrate phase is also characterized by higher early total porosity (Table 2).

In the second stage of the hydration process, carbonation initiated by the excess of CO_3^{2-} ions at early stage of hydration in cement pastes with Na₂CO₃ is more intense in comparison with that in the control cement paste in each followed time interval. A dense, well-developed network of CaCO₃ crystalline nuclei in Na₂CO₃ modified cement pastes at early stage of hydration are observed. This results a progressive formation of CaCO₃ crystals per unit volume of hydrated cement paste, capable of gradual reacting with atmospheric CO_2 . The degree of carbonation is higher in Na₂CO₃ modified cement pastes relative to the control one. Higher volume of carbonation products in the cement paste with Na₂CO₃ has also contributed to calcium carbonate aluminate hydrates formation. This result appears after finding that carbonate aluminate hydrates are not found in C₃A+H₂O paste and suspension. A preferential carbonation of the bonding hydrate phase in the Na₂CO₃ modified cement paste and C₃A+H₂O systems is found. The dependence between the cement paste mixture composition and important engineering properties is well recognized [27-30]. With time of hydration compressive strength is markedly increased whereas total porosity is pronouncedly decreased in the control cement paste relative to those found in the pastes with 2 and 4 mass% of Na₂CO₃.

Conclusions

The following conclusions are applicable to the particular test materials and test methods employed:

The higher Na₂CO₃ percentage, the higher strength growth at total porosities ranging between 50.17 and 51.30% after 24 h hydration at 20°C/100% R. H. wet air is found. The higher Na₂CO₃ percentage, the lower strength growth between 28 and 365 days dry (20/ 60% R. H.) and wet (20°C/100% R. H.) air cure is recognized. The higher Na₂CO₃ percentage, the

Table 2 Specific gravity, volume density and total porosity of cement pastes cured in dry (D) and wet (W) air

	Property of the cement paste at w/c=0.5	Hydration of cement pastes in time						
Type of cement		6 h	24 h	28 days		365 days		
puste		W	W	D	W	D	W	
Control	Compressive strength/MPa		1.8	10.4	19.7	23.6	32.6	
	Specific gravity/g cm ⁻³		2.742	2.592	2.269	2.588	2.248	
	Volume density/g cm ⁻³		1.366	1.476	1.398	1.548	1.549	
	Porosity/% vol.		50.17	42.67	38.27	40.18	31.10	
With admixture of 2 mass% of NaCO ₃	Compressive strength/MPa	0	3.3	9.8	15.5	16.9	23.0	
	Specific gravity/g cm ⁻³	2.735	2.732	2.547	2.257	2.708	2.493	
	Volume density/g cm ⁻³	1.222	1.343	1.464	1.336	1.571	1.452	
	Porosity/% vol.	55.34	50.86	42.79	40.86	41.96	41.75	
With admixture of 4 mass% of NaCO ₃	Compressive strength/MPa	0.2	4.3	11.3	11.6	10.6	17.6	
	Specific gravity/g cm ⁻³	2.803	2.704	2.521	2.256	2.605	2.439	
	Volume density/g cm ⁻³	1.370	1.316	1.422	1.370	1.457	1.443	
	Porosity/% vol.	51.13	51.30	43.60	39.29	44.10	40.86	

higher total porosity indicating the coarser pore structure formed in the cement pastes independently on curing regime is observed. Total porosity is by 9.76% lower in the control cement paste after 365 days wet air cure relative to that observed in the paste with 4 mass% of Na₂CO₃.

The rate of carbonation of Na₂CO₃ modified cement pastes is progressively accelerated in each time interval due to the excess of CO₃²⁻ ions in paste mixture composition at early stage of hydration relative to that of control cement paste. A destructive effect of carbonation is evidently demonstrated by decreased compressive strength and increased total porosity in Na₂CO₃ modified cement pastes relative to those observed in control specimens, cured 365 days in dry and wet air.

Acknowledgements

The authors wish to thank the Slovak Grant Agency VEGA (grant: 2/6108/26) and National Research Council Canada for financial support.

References

- 1 U. Ludwig, Proceedings of the 6th Int. Congr. Chem. Cem., Moscow, 3 (1974).
- 2 R. Kondo and M. Daimon, Proceedings of the 6th Int. Congr. Chem. Cem., Moscow, 3 (1974).
- 3 J. Skalny and J. F. Young, Proceedings of the 7th Int. Congr. Chem. Cem., Sub – Theme 2, Paris (1980).
- 4 V. Šatava, Stavivo, 11/12 (1978) 436.
- 5 F. W. Locher and W. Richartz, Proceedings of the 6th Int. Congr. Chem. Cem., Moscow, 5 (1974).
- 6 V. Lach, Stavivo, 7/8 (1983) 291.
- 7 H. F.W. Taylor, Proceedings of the 6th Int. Congr. Chem. Cem., Moscow, 114 (1974).
- 8 H. F. W. Taylor, Proceedings of the 8th Int. Congr. Chem. Cem., Vol. I, Rio de Janeiro, (1986), p. 82.
- 9 W. Kurdowski, W. Nocuň-Wczelik, K. Miškiewicz and J. Szuba, Proceedings of the 8th Int. Congr. Chem. Cem., Vol. III, Rio de Janeiro, 179 (1986).

- J. Bensted, Critical Reviews and Case Studies on Manufacturing, Quality Control, Optimization and Use, S. N. Ghosh, Ed., 308–343 (1989).
- 11 W. F. Cole and B. Kroone, J. Am. Concr. Inst., 31 (1960) 1275.
- 12 Z. Šauman, Cem. Concr. Res., 2 (1972) 5.
- 13 Z. Šauman and V. Lach, Cem. Concr. Res., 2 (1972) 435.
- 14 M. Matoušek, Proceedings of the 7th Int. Congr. Chem. Cem., Paris, 4 (1980) 764.
- 15 C. J. Goodbrake, J. F. Young and R.L. Berger, J. Am. Ceram. Soc., 62 (1979) 168.
- 16 ACI 212. 3R 89: Chemical Admixtures for Concrete, ACI Seminars, How to Effectively Use the Newest Admixtures, ACI Course Manual SCM – 23 (1990).
- 17 F. Young, R. L. Berger and J. Briese, J. Am. Ceram. Soc., 57 (1974) 394.
- 18 L. Berger, Cem. Concr. Res., 9 (1979) 649.
- 19 H. Ushiyama, J. Kawamo and N. Kamegai, Proceedings of the 8th Int. Congr. Chem. Cem., Vol. III, Rio de Janeiro, 154 (1986).
- 20 T. Ogino, T. Suzuki and K. Sawada, Geochim. Cosmochim. Acta, 51 (1987) 2757.
- 21 L. Ying-Yu and W. Qiu-Dong, Concrete Durability Bryant and Katherine Mather International Conference American Concrete Institute Special Publication SP – 100, 1915 (1987).
- 22 A. K. Suryavanski and R. N. Swamy, Adv. Cem. Res., 9 (1997) 35.
- 23 M. Richardson, Carbonation of Reinforced Concrete: Its Causes and Management, CITIS Ltd., London 1988.
- 24 H. F. W. Taylor, The Chemistry of Cements, Academic Press, New York, London 1964.
- 25 R. Fierens, A. Verhaegen and J. P. Verhaegen, Cem. Concr. Res., 4 (1974) 695.
- 26 EN 196 1 Methods of Testing Cement; Determination of strength.
- 27 I. Janotka, Ľ. Krajči, A. Ray and S. C. Mojumdar, Cem. Concr. Res., 33 (2003) 489.
- 28 S. C. Mojumdar, Res. J. Chem. Environ., 9 (2005) 23.
- 29 B. Chowdhury, J. Therm. Anal. Cal., 78 (2004) 215.
- 30 S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 1133.

DOI: 10.1007/s10973-007-8517-6